
AA

ik -.-

34; I-22

Ma 18

An Efficiently Computable Metric for
Comparing Polygonal Shapes

Esther M. Arkin*
L. Paul Chew**

Daniel P. Huttenlocher
Klara Kedem**

Joseph S. B. Mitchell***

TR 89-1007
May 1989

DTIC
S ELECTE
S JUL 14 1989

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This research was partially supported by NSF grants DMC 8451984 and ECSE 8857642.
-This research is supported by DARPA under ONR contract N001 4-86-K-0591, NSF grant DMC-86-17355

and ONR contract N00014-88-K-0281.
-"This research was partially supported by NSF grants IRI-8710858 and ECSE 8857642, and by a grant from

Hughes Research Laboratories.

I rj(r1Ot SATEM~ENT A.
Approved jo public To.eciue,

An Efficiently Computable Metric
for Comparing Polygonal Shapes

Esther M. Arkin* L. Paul Chewt Daniel P. Huttenlocher

Klara Kedemt and Joseph S. B. Mitchell

Cornell University
Ithaca, NY 14853

Abstract

Model-based recognition is concerned with comparing a shape A, which
is stored as a model for some particular object, with a shape B, which is
found to exist in an image. If A and B are close to being the same shape,
then a vision system should report a match and return a measure of how
good that match is. To be useful this measure should satisfy a number of
properties, including: (1) it should be a metric, (2) it should be invariant
under translation, rotation, and change-of-scale, (3) it should be reasonably
easy to compute, and (4) it should match our intuition (i.e., answers should
be similar to those that a person might give). We develop a method for
comparing polygons that has these properties. The method works for both
convex and nonconvex polygons and runs in time O(mn log inn) where m is
the number of vertices in one polygon and n is the number of vertices in the
other. some examples to-ekaw that the method produces
answers that are intuitively reasonable.

*Partially supported by NSF grants DMC 8_1984 and ECSE 8857642.
t Supported by DARPA under ONR contrqct N0014-86-K-0591, NSF grant DMC-86-17355 and Q

ONR contract N00014-86-K-0281. 0
IPartially supported by NSF grants/JlU-8710858 and ECSE 8857642, and by a grant from

Hughes Research Laboratories.

1 Detribution I

Availabiity Codes

st Avail andfor/ st ISpecial
_A'L--'

1 Introduction

A problem of both theoretical and practical importance in computer vision is that
of comparing two shapes. To what extent is shape A similar to shape B? Model-
based recognition is concerned with comparing a shape A, which is stored as a
model for some particular object, with a shape B, which is found to exist in an
image. If A and B are close to being of the same shape, then a vision system

should report a match and return a measure of how good that match is. Hence,
we are interested in defining and computing a cost function d(A, B) associated
with two shapes A and B that measures their similarity.

The long-term goal of this research is to develop methods of comparing ar-

bitrary shapes in two or three dimensions. Here, we restrict our attention to
polygonal shapes in the plane, with an extension to the case in which a boundary
may contain circular arcs in addition to straight line segments. Our technique is
designed to work with objects for which the entire boundaries are known.

Before suggesting a similarity measure to be used for comparing polygons, we

examine several properties that such a measure d(., .) should have.

9 It should be a metric.

- d(A, B) > 0 for all A and B.

- d(A, B) = 0 if and only if A = B. We expect a shape to resemble itself.

- d(A, B) = d(B, A) for all A and B (Symmetry). The order of compari-
son should not matter.

- d(A, B) + d(B, C) > d(A, C) for all A, B, and C (Triangle Inequality).

The triangle inequality is necessary since without it we can have a case in
which d(A, B) and d(B, C) are both very small, but d(A, C) is very large.

This is undesirable for pattern matching and visual recognition applications.
If A is very similar to B and B is very similar to C, then A and C should
not be too dissimilar.

9 It should be invariant under translation, rotation, and change-of-scale. In
other words, we want to measure shape alone.

2

* It should be reaonably easy to compute. This must hold for the measure to
be of practical use.

* Most important of all, it should match our intuitive notions of shape resem-
blance. In other words, answers should be similar to those that a human
might give. In particular, the measure should be insensitive to small per-
turbations (or small errors) in the data. For example, moving a vertex by
a small amount or breaking a single edge into two edges should not have a
large effect.

Representation of Polygons

A standard method of representing a simple polygon A is to describe its bound-
ary by giving a (circular) list of vertices, expressing each vertex as a coordinate
pair. An alternative representation of the boundary of a simple polygon A is to
give the turning function GA(O). The function EA(8) measures the angle of the
counterclockwise tangent as a function of the arc-length s, measured from some
reference point 0 on A's boundary. Thus EA(O) is the angle v that the tangent at
the reference point 0 makes with some reference orientation associated with the
polygon (such as the x-axis). eA(S) keeps track of the turning that takes place,
increasing with left-hand turns and decreasing with right-hand turns (see Figure
1). Formally, if x(s) is the curvature function for a curve, then ic(s) = E'(s). The
curvature function ic(s) is frequently used as a shape signature ([HT], [HW], [SSI,
[Wol], [Wo2]).

Other authors have used a slightly different definition of the turning function
in which EA(0) is defined to be 0. Our definition, in which GA(0) is the angle of
the tangent line at the reference point, leads to a simple correspondence between
a shift of 8A(S) in the 0 direction and a rotation of A. This correspondence is less
clear for the alternate definition.

Without loss of generality, we assume that each polygon is rescaled so that the
total perimeter length is 1; hence, EA is a function from [0, 1] to R. For a convex
polygon A, eA(S) is a monotone function, starting at some value v and increasing
to v + 21r. For a nonconvex polygon, GA(S) may become arbitrarily large, since
it accumulates the total amount of turn, which can grow as a polygon "spirals"
inward. Although G)A(S) may become very large over the interval s E [0, 11, in

3

e(s)

v +2

VV

Figure 1: Defining the turn function 0(s).

order for the function to represent a simple closed curve, we must have OA(1) =

OA(O) + 27r (assuming that the origin 0 is placed at a differentiable point along
the curve).

The domain of 19A(S) can be extended to the entire real line in a natural way
by allowing angles to continue to accumulate as we continue around the perimeter
of the polygon A. Thus, for a simple closed polygon, the value of A(S + 1) is
OA(S) + 27r for all s. Note that the function 0 A(S) is well-defined even for arbitrary
(not necessarily simple or closed or polygonal) paths A in the plane. When the
path is polygonal, the turning function is piecewise-constant, with jump points
corresponding to the vertices of A.

Representation of planar curves (and, in particular, polygons) in terms of some
function of arc length has been used by a number of other researchers (e.g., [OW],
[SS], etc.) in computational geometry and computer vision. We use this represen-
tation to compute a distance function for comparing two simple polygons (A and
B) by looking at natural notions of distances between the turning functions (3 A(s)

and e8 (s).

The function EA(S) has several properties which make it especially suitable for

4

Figure 2: Non-uniform noise is problematic for this distance function.

our purposes. It is piecewise-constant for polygons (and polygonal paths), mak-
ing computations particularly easy and fast. By definition, the function eA(S) is
invariant under translation and scaling of the polygon A. Rotation of A corre-
sponds to a simple shift of EA(S) in the 0 direction. Note also that changing the

location of the origin 0 by an amount t E [0, 1] along the perimeter of polygon A
corresponds to a horizontal shift of the function EA(S) and is simple to compute
(the new turning function is given by EA(S + t)).

We formally define the distance function between two polygons A and B as the

L, distance between their two turning functions EA(S) and EB(s), minimized with

respect to vertical and horizontal shifts of the turning functions (in other words,
we minimize with respect to rotation and choice of reference points). For p = 2 we

show that this distance function can be computed efficiently in 0(n 2 log n) time
for polygons with n vertices.

One possible drawback of our distance function is that it may be unstable under

certain kinds of noise, in particular, non-uniform noise. For example, suppose we
have a triangle with one very wiggly side so that the wiggly side accounts for most
of the length of the boundary of the polygon. Comparing it with a triangle, we
will get a very bad (in fact, arbitrarily bad) match. See Figure 2. Fortunately,
in many computer vision applications it is reasonable to assume that the noise
is roughly uniformly distributed over the sides of the polygon, in which case the

similarity measure we define performs nicely. See Section 4 for examples.

Schwartz and Sharir [SS] have defined a notion of distance similar to ours.

5

However. they compute an approximation based on discretizing the turning func-

tions of the two shapes into many equally spaced points; thus, the quality of the

approximation depends on the number of points chosen. Our approach, on the
other hand, is to examine the combinatorial complexity of computing the exact

metric function between two polygon boundaries, using only the original vertices.
Thus, our method runs in time O(n 2 log n) where n is the total number of polygon
vertices, while their method computes an approximate distance in time O(k log k),

where k >> n is the total number of interpolation points used. Furthermore, [SS]

suggest "convexifying" non-convex polygons in order to compare them, as their
method does not apply to non-convex polygons. Our algorithm applies to both
convex and non-convex simple polygons (and even to some types of non-simple
polygons).

The remainder of this paper is organized as follows. In Section 2 we give a

formal definition of the distance between two polygons based on their turning

functions. We prove that this function is a metric and show some of its properties.

These results are used in Section 3 to develop an 0(n3) algorithm for computing
the distance between two polygons, where n is the total number of vertices; we

then refine this algorithm to obtain an 0(n 2 log n) running time. Section 4 contains

examples of the distance function computed for several polygons using an imple-
mentation of our method. Section 5 is a summary and discussion of extensions

and further research.

2 A Polygon Distance Function

Consider two polygons A and B and their associated turning functions O3A(s) and

OB(s). The degree to which A and B are similar can be measured by taking the

distance between the functions OA(s) and E)B(s) according to our favorite metric

on function spaces (e.g., Lp metrics) . Define the L , distance between A and B as

I O A s Ia s d) "

p(A, B) = IIEA - EBIIp (j1eA(S) - eB(s)I ,

where I I I denotes the Lp norm.

ep has some undesirable properties: it is sensitive to both rotation of polygon

A (or B) and choice of reference point on the boundary of A (or B). Since rotation

6

and choice of reference point are arbitrary, it makes more sense to consider the
distance to be the minimum over all such choices. If we shift the reference point
0 along A's boundary by an amount t, then the new turning function is given by
OA(S + t). If we rotate A by angle 0 then the new function is given by A(S) + 9.
Thus, we want to find the minimum over all such shifts t and rotations 0 (i.e., over
all horizontal and vertical shifts of eA(S)). In other words, we want to solve for

d(A, B) i= min J(+ t) - E)(s) + 91P ds)

=E (9E[~0 1] 10.B= m rin D A'B(t, 9))
\ oti tE [0 l 11

where
D, (t, 0) 1 IeA(S + t) - EB(S) + 91P ds

Lemma 1 dp(A, B) is a metric for all p > 0.

Proof. This follows from the fact that I I I , is a metric for all p > 0. I

Lemma 2 For any fixed value of t, and for any p > 1, D 'B(t, 9) is a convex
function of 9.

Proof. For fixed s and fixed t, the function F(8) = IOA(s + t) - OB(S) + 91
is clearly a convex function by the convexity of G(y) = lyI" (for p _> 1), and
integrating a convex function maintains convexity. I

In particular, using the L 2 metric, D AtB(t, 9) is a quadratic function of 0 for
any fixed value of t. This holds for any simple closed shapes, but it is especially
easy to see for polygons.

We assume from now on that A and B are polygons. Then, for a fixed t, the
integral f J;EA(s + t) - eOB(S) + 912 ds can be computed by adding up the value
of the integral within each strip defined by a consecutive pair of discontinuities in
EA(S) and 9B(S) (see Figure 3). The integral within a strip is trivially computed

7

OB(s)

OA(S)
' i I '

I II SI I

Figure 3: The rectangular strips formed by the functions @A(s) and eB(s).

as the width of the strip times the square of the difference GEA(S + t) - GB(s)I
(which is constant within each strip). Note that if m and n are the numbers of
vertices in A and B, respectively, then there are m + n strips and that as 0 changes,
the value of the integral for each strip is a quadratic function of 0.

In order to compute d2(A, B), we must minimize D ,B (t, 9) over all t and 9. We
begin by finding the optimal 8 for any fixed value of t. To simplify notation in the
following discussion, we use f(s) = GA(S), g(s) = EOB(s), and h(t, 0) = D A'8 (t,).

Lemma 3 Let h(t,9) = f0 (f(s + t) - g(s) +)2 ds. Then, in order to minimize
h(t,0), the best value of 9 is given by

0"(t) j(g(s) - f(s + t)) ds

- -27rt,

where a= J g(s) ds - fo f(s) ds.

Proof.

Oh(t, 9) = j'(20 + 2f(s + t) - 2g(s)) ds

= 20 + 2 (f(+ t) - g()) ds.

8

Lemma 2 assures us that the minimum occurs when we set this quantity equal to

zero and solve for 9. Thus,

9o(t) = (g(s) -f(s + t)) ds.

Now.

1 f(s + t) ds = f(s) ds

f j (s) ds + j~(s - 1) + 2ir] ds

= ff(s)ds+f (s) d + 2rt

- 2rt + f(s) ds.

Thus,

9o(t) = J g(s) ds - 2rt - f(s) ds

= a - 2rt.

Substituting the expression for 0"(t) in d2(A, B) we are left with a one-variable

minimization problem:

d2(A,B) = min h(t,0m(t))
tE [0,11

mi 2 rs -.. [#*t)

tE[0,1] 0Jtf(s + t) - g(s)J s-[()] ~

3 Algorithmic Details
In this section we show that the distance function arhieves its minimum at one of

mn discrete points on [0, 1], which we call critical events. Recall that in the process

9

of finding d2(A, B) we have to shift the function f(s) to f(s + t) for t E [0, 1].
During this shifting operation the breakpoints of f collide with the breakpoints of
g. We define a critical event as a value of t where a breakpoint of f collides with
a breakpoint of g. Clearly there are mn such critical events for m breakpoints in
f and n breakpoints in g.

Using the fact that the minimum is obtained at a critical event, we present a
basic algorithm for computing d2(A, B) that runs in 0(n 3) time for two n-vertex
polygons (and time O(mn(m + n)) for an m vertex polygon and an n vertex
polygon). We then describe how to modify the basic method to improve the
runtime to 0(n 2 log n) (or 0(mn log inn) for unequal numbers of vertices).

Recall that d2(A, B) = mini,6(h(t,0))4 , where h(t,O) = D 'B(t,9). We prove
that h(t, 9) has properties that lead to efficient algorithms for computing our
polygon metric.

Lemma 4 If f(.) and g(.) are two piecewise-constant functions with m and n break-
points respectively, then for constant 9,

h(t, 9) = (f(s + t) - g(s) + 0)' ds

is piecewise linear as a function of t, with mn breakpoints.

Proof. We give a geometric proof. First recall that for a given value of t the
discontinuities in f and g define a set of m + n rectangular strips (see Figure 3).
The value of h(t, 9) is simply the sum over all these strips of the width of a strip
times the square of its height. Except at critical events, as f is shifted the width
of each strip changes, but the heigbt remains constant. Each changing rectangle
contributes to changes in h(t, 0). If t is the amount of shift, then for a shrinking
rectangle, the change is (-t) times the square of the height; for a growing rectangle
the change is (+t) times the square of the height. Since the heights are constant,
the change in h(t, 8) is a sum of linear terms and is therefore linear. Breakpoints
in h(t, 9) clearly occur at each of the mn critical events where a discontinuity of f
is aligned with a discontinuity of g. I

This result leads to a straightforward algorithm for computing d2(A, B). Let
(t*, 0*) be the location of the minimum value of h(t, 0). By the preceeding lemma,
h(t, O*) is linear as a function of t; thus, t' must be at one of the mn breakpoints

10

of h. In other words, we can find the minimum by checking just the values at
breakpoints. These observations lead to the following result.

Corollary 5 The distance d2(A, B) between two polygons A and B (with m and n
vertices) can be computed exactly in time O(mn(m + n)).

Proof. We prove the theorem by describing the algorithm. Given values for both t
and 0. h(t, 9) can be computed in O(m+n) time by adding the contributions of the
m + n rectangular strips between f and g. Let cO, c1 ,. • • , c,,n,, be the critical events
that occur as f is shifted by t. By the preceeding observations, the minimum
occurs when t equals one of c0, c1 ,. ... , cm,,. Since the best 0 value for a given t can
be found in constant time (Lemma 3), we simply compute h(t, O9(t)) in O(m + n)
time for each of these critical events, find the minimum, and take its square root
to get d2(A, B). I

Refinement of the Algorithm

Theorem 6 The distance d2(A, B) between two polygons A and B (with m and n
vertices) can be computed exactly in time O(mn log inn).

Proof. We prove the theorem by describing the algorithm. The basic idea is
the same as the previous algorithm: we compute h(t, 0"(t)) for each of the critical
values of t. First, note that we only need to compute the critical values of h(t, 0),
since by Lemma 3 the effect due to 9*(t) can be calculated separately. Second, we
observe that h(t, 0) changes in a very constrained fashion. As a matter of fact, by
keeping track of a small set of values we can easily determine how the function
h(t, 0) changes at each critical event.

The values we keep track of are based on the rectangular strips that appear
between the two functions f(s) and g(s). (To simplify notation, we use f and g
in place of eA and e8 , respectively.) Recall that g(s) is fixed in place and that
f(s) is shifted by t. For a given value of t, the discontinuities in f(s + t) and g(s)
define a set of rectangular strips, as was illustrated in Figure 3. Each rectangular
strip has f at the top and g at the bottom or vice-versa. The sides of a strip are
determined by discontinuities in f and g.

11

For the purposes of the algorithm, we separate the strips into four groups based
on the discontinuities at the sides of the strips: R11 for those with f on both sides;
Rgg for those with g on both sides; R1 g for those with f on the left and g on the
right; and Rgf for those with g on the left and f on the right. The sets Rg and
Rg! are particularly important, as these are the strips whose widths change as t
changes (as f is shifted). Thus, these strips affect the slope of h(t, 0).

We keep track of two quantities: Hfg and Hg1 . H1 g is the sum of the squares
of the heights of all the strips in Rfg, and Hg1 is the sum of the squares of the
heights of all the strips in Rgf.

The algorithm is based on the observation that for values of t between two
critical events the slope of h(t, 0) is H,1 - H1 g. This follows from the fact that, as
f is shifted by t, Rfg is the set of all strips that increase in width by t, and R,1

is the set of all strips that decrease in width by t. The widths of the R11 and Rgg
strips remain unchanged.

Consider what happens at one of the critical events, where the change is no
longer simply linear. We claim that the quantities H1 , and Hg! can be easily
updated at these points. To see this note that, at a critical event, an fg-type strip
disappears (its width goes to zero) and a new gf-type strip appears (see Figure 3).
At the same time, the right boundary of the adjacent strip to the left is converted
from f to g, and the left boundary of the adjacent strip to the right is converted
from g to f. To update H1 , and Hg1 we need to know just the values of f and g
around the critical event.

This gives us the following algorithm:

1. Initialize:

e Given the piecewise constant functions f and g, determine the critical
events: the shifts of f by t such that a discontinuity in f coincides with
a discontinuity in g. Sort these critical events by how far f must be
shifted for each event to occur. Let co, cl,..., c, be the ordered list of
shifts for the critical events; co = 0.

e Calculate h(O, 0). This involves summing the contributions of each of
m + n strips and takes linear time.

e Determine initial values for H1 , and H9 1.

12

2. For i = 1 to e

* Determine the value of h(c,,0) = (Hgf - Hgj)(c, - ci- 1) + h(ci_1 ,O).

* Update Hfg and Hgf.

The algorithm takes advantage of the fact that h(t, 0) is piecewise linear as a
function of t; thus, the entire function can be determined once we know an initial
value and the slope for each piece. It is easy to see that the time for initialization
is dominated by the time it takes to sort the critical events: O(elog e), where e
is the number of critical events, or 0(mn log inn) where m and n are the sizes of
the two polygons. The updates required for the remainder of the algorithm take
a total of 6(e), or O(m + n) time. I

In practice, it might be useful to recalculate h(t, 0) periodically from scratch
to avoid errors that could accumulate. If this is done every 0(+") steps then thev\loge C

time bound for the entire algorithm remains O(e log e).

4 Examples

In this section we illustrate some of the qualitative aspects of the distance function
d2(A, B) by comparing some simple polygons using the algorithm described in the
previous section. In addition to providing a distance, d2(A, B), between two poly-
gonal shapes, the method gives the relative orientation, 6° , and the corresponding
reference points of the two polygons for which this distance is attained.

The first example compares two simple polygons that are very similar in shape,
but which are at different orientations (see Figure 4). The value of d2(A, B) is 0.16
which is attained at a rotation of 180 degrees and with the upper left vertex of the
first polygon matched with the lower right vertex of the second one. (Distances
less than about 1.0 seem to correspond to polygons that a person would rate as
resembling each other; pairs of polygons that are very different can have arbitrarily
high distances.)

To illustrate how the distance function can be used to compare a model with
several different instances, we consider the case of matching a triangle to three
different shapes: another triangle, a "cut-off" triangle, and a quadrilateral, as

13

Figure 4: Comparing two simple polygons.

Figure 5: Comparing several polygons.

14

Figure 6: A rectangle with a notch removed.

shown in Figure 5. The distances for these three matches are .09, .14 and .23,
respectively. The three corresponding rotations are 175, 176 and 184 degrees.
Thus we see that the triangle is the best match, the cut-off triangle matches
second best, and the trapezoid is the worst match. The match to the cut-off
triangle suggests that the metric is useful for matching partially occluded objects,
as long as the overall shape of the object does not change too radically.

Our metric also provides a qualitatively good estimate of a match when one
polygon is an instance of another, but with some perturbation of its boundary. A
simple example is given by the cut-off triangle in the previous figure, where the
orientation estimate is still about 180 degrees even though the number of vertices
has changed. Another example is given in Figure 6, where we compare a model
rectangle against a second rectangle and against another rectangle with a notch
removed. The distances are .07 and .11, respectively, with relative orientations of
2 and 1 degrees.

An extreme case of matching distorted polygons is shown in Figure 7, where a
triangle is compared with a somewhat triangular shape. In this case the distance is
.22, and the orientation difference is 2 degrees. Note however, that, as mentioned in
the introduction (see Figure 2), such perturbations must occur relatively uniformly
along the perimeter of the polygon for the match to be reasonable.

15

Figure 7: Matching a triangle to a highly noisy shape.

5 Summary and Discussion

We have suggested using the L2 metric on the turning functions of polygons as
a way to implement the intuitive notion of shape-resemblance. This method for
comparing shapes has the following advantages:

* It is a metric on polygonal shapes.

* It compares shape alone; it is invariant under translation, rotation, and
change-of-scale.

* It is reasonably easy to compute, taking time O(mn log inn) to compare an
m vertex polygon against an n vertex polygon.

* Finally, it corresponds well to intuitive notions of shape resemblance.

In addition, this metric works for nonconvex as well as convex polygons, and even
works for some polygonal shapes that are not simple and/or not dosed.

Like the method developed by Schwartz and Sharir (SS], our method is actually
based on a convolution. Recall that the major portion of our algorithm is devoted
to minimizing h(t, 9) = f l (f(s + t) - g(s) + 0)2 ds. When this formula is multiplied
out, all the terms depend on f alone or g alone, except for the convolution term
fof(s + t)g(s) da. If f and g are piecewise constant with m and n discontinu-
ities, respectively, then each term can be calculated in either O(m) or O(n) time

16

Figure 8: A match on which the L, metric does poorly but the L 2 does well.

except for the convolution term, which seems to require O(mn log inn) time. Of
course, the Fast Fourier Transform (FFT) can be used to compute a convolution
in O(k log k) time, but this requires k evenly spaced sample points for each of
f and g. For our problem, the discontinuities are not necessarily evenly spaced,
so the FFT cannot be used unless we are willing to approximate our functions f
and g. A good approximation may require more than mn points. In any case,
the development of a fast method for convolutions using unevenly spaced sample
points would lead to improvements in the time bound for our technique.

We used the L 2 metric, but similar techniques can be used to develop polygon-
resemblance metrics that are based on different function-space metrics. Unfor-
tunately, not all such metrics have L2's advantages of being reasonbly easy to
compute and matching our ituitive idea of shape resemblance. For instance, it is
also possible to compute the L1 metric on two 0(s) functions using an algorithm
similar to that in Section 3. In the case of the L, metric, however, the value of 9"
is not given directly for each value of s as it is for the L2 metric. Thus for each of
the mn critical events, the optimal value of 0 must be computed explicitly. Using
a data structure similar to that in Section 3, the overall computation can be done
in time O(n 3 log n), as opposed to O(n 2 log n) for the L2 metric.

The L, metric has an additional drawback: The optimal match will occur
when one side of polygon A is at the same orientation as some side of polygon B.
That is, the value of 8° is such that in some strip the two functions f(s + t) and
g(s) are coincident. In contrast, the L 2 metric finds the optimal orientation (in
a least squares sense) without requiring any two edges to be identically oriented.

17

Examine Figure 8 to see why requiring identical orientations can be undesirable:
for the L, metric the best match occurs at an orientation difference of 76 degrees,
bringing two edges into alignment. This would rotate the two figures so that they
approximately form a star, a bad match. In contrast, for the L 2 metric the best
match is at an orientation difference of 7 degrees, which agrees quite well with our
intuitive sense of the best match.

It may be possible to apply our methods to problems involving partially oc-
cluded objects, that is objects for which the entire model is known, but for which
only a portion of the boundary appears in the image. Our technique as presented
here has not been designed to work with such objects, although, as shown by some
of our examples, it seems to give intuitively correct answers when objects are not
severely occluded. The combination of occluded objects and our desire to make
our metric independent of change-of-scale causes some difficulty. We were able to
control change-of-scale problems by normalizing our polygons to make all perime-
ters have length one. If portions of a boundary are unknown then it is unclear how
this normalization should be done. Of course, if the scale of the image is known,
then partially occluded objects do not present any difficulties.

Our results can be generalized to include cases in which the shapes A and B
have some or all of their boundary represented as circular arcs. If A includes some
circular arcs on its boundary, then the turning function EA(S) is piecewise linear
instead of piecewise constant. As before, to compare shapes A and B we need to
minimize

h(t, 9) = 10A(S 4 t) - 9 B(s) + 912 ds.

The derivation of 89(t), the best value of 0 for given t, does not change at all; it is
still a quadratic function of t. But if the shapes include circular arcs, then h(t, 0)
can be piecewise cubic instead of simply piecewise linear. Thus, the minimum value
of h(t, 9) does not necessarily occur at a critical event, and more information is
needed in order to determine the behavior of h between critical events.

However, since h(t, 0"(t)) is piecewise cubic as a function of t, we can determine
the behavior of h between critical events if we have enough data points for h. If
we collect two additional (t, h(t, 9*(t))) pairs between each adjacent pair of critical
events then we can determine the coefficients of h(t, 9"(t)) (= at 3 + a 2t2 + a3t + a4

between critical events) and compute the minimum analytically. Thus, the basic
approach of calculating h(t, 9) in O(m + n) time for each of O(mn) values is still

18

valid and there is an algorithm that runs in time O(mn(m + n)).

The O(mn log inn) time algorithm can also be generalized to work with circular
arcs, and the resulting algorithm has the same asymptotic time bound. Unfortu-
nately, the number of updates needed and the resulting accumulation of round-off
error may make this algorithm impractical.

19

References

[HT] J. Hong and X. Tan, "The Similarity Between Shapes under Affine Trans-
formation", Technical Report No. 336, Robotics Report No. 133, New York
University, Courant Institute of Mathematical Sciences, December, 1987.

[HW] J. Hong and H.J. Wolson, "An Improved Model-Based Matching Method
Using Footprints", Ninth International Conference on Pattern Recognition,
Rome, Italy, November 14-18, 1988.

[OW] J. O'Rourke and R. Washington, "Curve Similarity via Signatures", in Com-
putational Geometry, G. Toussaint (ed.), North-Holland, 1985. pp. 295-318.

[SS] J.T. Schwartz and M. Sharir, "Some Remarks on Robot Vision", Techni-
cal Report No. 119, Robotics Report No. 25, New York University, Courant
Institute of Mathematical Sciences, April, 1984.

[Woll H. Wolfson, "On Curve Matching", Technical Report No. 256, Robotics Re-
port No. 86, New York University, Courant Institute of Mathematical Sciences,
November, 1986.

[Wo2] H. Wolfson, "On Curve Matching", Proc. of IEEE Workshop on Computer
Vision, Miami Beach, FL, November 30-December 2, 1987.

20

